判別式Dで実数解と共有点の個数を求めよう!練習問題で徹底解説!

二次方程式の判別式と解の個数を求める方法


今回解決する悩み

「判別式Dの公式は?」
「実数解や共有点の個数を求めたい」

今回は2次関数に欠かせない判別式Dについての悩みを解決します。

高校生
実数解の個数が求められなくて...

 

高校数学において、判別式Dは非常に重要な公式の1つです。

判別式Dを求める公式は以下の通りです。

判別式Dの公式

判別式の公式

 

判別式Dを利用することで、二次方程式の解がいくつあるかを判断できます。

2次方程式の実数解の個数を判別式Dで判別する

≫判別式Dを使った練習問題はこちら

 

本記事では、判別式Dの公式と解の個数との関係について解説します。
段階を踏んで解説するので、ぜひ読んでみてください。

マストラ運営者プロフィール

《運営者プロフィール》

判別式Dとは?

まず判別式Dとは以下の公式のことを指しています。

判別式の公式

《判別式Dの公式》

二次方程式における各項の係数を\(a,b,c\)として、

判別式Dの公式

\[D=b^{2}-4ac\]

となるように代入することで、Dの値を求めます。

このとき、判別式Dの正負によって実数解の個数が分かるのです。

判別式Dと実数解の個数

判別式Dの正負によって実数解の個数が分かると書きましたが、もう少し深掘りして解説します。

判別式Dと解の個数

D>0のとき、異なる実数解を2つもつ。
D=のとき、実数解を1つもつ。(重解)
D<0のとき、実数解をもたない。

例題1

2次方程式\(x^{2}+2x-3=0\)の実数解の個数を求めよう。

解答

2次方程式\(x^{2}+2x-3=0\)の判別式をDとすると

\[D=2^{2}-4 \cdot 1 \cdot (-3)=16>0\]

よって、実数解の個数は2個である。

 

判別式Dと共有点の個数

判別式Dの符号によって、2次関数とx軸との共有点の個数が分かります。

2次方程式の解

つまり、判別式Dの符号によって以下の3つのことがいえます。

判別式Dとx軸との関係

①D>0のとき、二次方程式は異なる2つに実数解をもつので、x軸と2か所で交わる。

②D=0のとき、二次方程式は1つの実数解をもつので、x軸と接している。

③D<0のとき、二次方程式は実数解をもたないのでx軸とは交わらない。

シータ
難しく感じますが、内容は単純なので安心してね。

 

そもそも\(ax^{2}+bx+c=0\)というのは、\(y=ax^{2}+bx+c\)とx軸の交点を求めています。

具体的に言うと\(x^{2}-6x+8=0\)という二次方程式の解は

\begin{eqnarray}
x^{2}-6x+8&=&0\\
(x-2)(x-4)&=&0\\
x&=&2,4
\end{eqnarray}

となりますが、これは2次関数\(y=x^{2}-6x+8\)が\(x=2,4\)でx軸と交わることを表しています。

判別式とx軸の交点

このように判別式を用いることで、二次方程式とx軸の交点の個数を求めることができます。

判別式Dを用いた練習問題

2次関数の分野で判別式Dを使った練習問題に挑戦してみましょう。

練習問題がもっと欲しい人はマストラ公式LINEアカウントからダウンロードできます。
↓↓↓
公式LINEから問題を受けとる

2次方程式の実数解の個数

2次方程式の判別式《例題1》

解答

(1) \(a=1,b=-4,c=5\)として、判別式Dの符号を求めます。

\begin{eqnarray}
D&=&b^{2}-4ac\\
&=&(-4)^{2}-4 \cdot 1 \cdot 5\\
&=&16-20\\
&=&-4<0
\end{eqnarray}

したがって、実数解をもたない。

条件を満たす\(m\)の範囲

2次方程式の判別式《例題2》

解答

(1) \(a=1,b=5,c=m\)として、判別式Dの符号を求める。

\begin{eqnarray}
D&=&b^{2}-4ac\\
&=&5^{2}-4 \cdot 1 \cdot m\\
&=&25-4m
\end{eqnarray}

与式が異なる2つの実数解をもつためには、\(D>0\)であればよい。

ゆえに、

\begin{eqnarray}
25-4m&>&0\\
4m&<&25\\
m&<&\frac{25}{4}
\end{eqnarray}

したがって、求める範囲は\(m< \dfrac{25}{4}\)

2次関数とx軸の共有点の個数

2次方程式の判別式《例題3》

解答

(1) \(y=x^{2}-3x+1\)について

\begin{eqnarray}
D&=&(-3)^{2}-4 \cdot 1 \cdot 1\\
&=&9-4\\
&=&5>0
\end{eqnarray}

よって、共有点の個数は2個

▽練習問題を無料でダウンロード!

↓↓↓
マストラ公式LINEアカウントから受け取る

判別式Dと解の公式を使うときの違い

判別式と解の公式はどちらも2次関数では欠かせない公式です。
しかし、それぞれの使い方は明確に異なります。

判別式と解の公式

「実数解がいくつあるのか」「共有点がいくつあるのか」といった、解の個数だけ分かれば良いときに判別式Dを使います。
判別式では解の個数は分かりますが、具体的な座標までは分からないのが特徴です。

一方で解の公式は判別式よりも強力です。
解の公式を使うことで、2次方程式の解まで分かります。

つまり、判別式Dと解の公式を使うときの違いは

判別式Dと解の公式の使い分け

  • 実数解の個数が知りたいなら⇒判別式D
  • 2次方程式の解まで求めたいなら⇒解の公式

なぜ解の個数が分かるの?

高校生
なんで判別式の符号から解の個数が分かるのですか?

そんなギモンの声が聞こえてきそうなので、なぜ判別式Dで実数解の個数が分かるのかを解説します。

まず、判別式Dの公式は以下の数式でしたね。

判別式の公式

\(b^{2}-4ac\)ってどこかで見たことがある形をしていませんか?

解の公式

そうです、判別式Dは解の公式のこの部分と同じ形をしているのです!
つまり、Dの符号によって以下の3パターンに分けて考えることができます。

\(D>0\)のとき

\(D>0\)のとき、解の公式におけるルート部分が正の数になることを表します。

つまり、二次方程式を満たす解が2つあることを指します。

Dが正のとき

このことから、D>0のとき二次方程式が2つの実数解をもつことが分かります。

\(D=0\)のとき

\(D=0\)のとき、解の公式におけるルートの中身が0ということですね。

これは二次方程式を満たす解が1つしかないことを指します。

Dが0のとき

したがって、D=0のとき二次方程式は実数解を1つもつことが分かりました。

\(D<0\)のとき

\(D<0\)のとき、解の公式におけるルートの中身がマイナスになります。

Dが負のとき

ルートの中身がマイナスになってしまうので、D<0のとき実数解を持たないことが分かります。

2年生の内容ですが、ルートの中が負の数になるときは虚数というものになります。

>>実数とは?実数に含まれるもの&実数でないものを具体例で解説

参考

解の公式とは?という方は以下の記事がおすすめ
二次方程式の解の公式をマスターしよう!

判別式D/4を活用しよう

判別式Dを少し応用したもので、\(\displaystyle \frac{D}{4}\)というものがあります。

\(\displaystyle \frac{D}{4}\)は与えられた二次方程式\(ax^{2}+bx+c=0\)の\(b\)が偶数のときにだけ使える公式です。

判別式D/4

\(y=ax^{2}+bx+c\)において、\(b\)が偶数のとき\(\displaystyle b'=\frac{b}{2}\)とすると

\[\displaystyle \frac{D}{4}=b'^{2}-ac\]

例として、二次方程式\(x^{2}+6x+3=0\)の解の個数を求めましょう。

\(x\)の係数が\(6\)で偶数なので、判別式\(\displaystyle \frac{D}{4}\)を使うことができます。

\(b'=3\)とすると、

\begin{eqnarray}
\frac{D}{4}&=&b'^{2}-ac\\
&=&3^{2}-1 \cdot 3\\
&=&6
\end{eqnarray}

\(\displaystyle \frac{D}{4}>0\)より、与えられた二次方程式は異なる2つの実数解をもつ。

判別式\(\frac{D}{4}\)の公式が覚えられない人は、判別式Dでも問題ないので安心してください。
シータ

なんで判別式はDなの?

ここで少し余談なのですが、「なぜ判別式の記号はDなのでしょうか」。
それにはちゃんとした由来があります。

高校生
なんで判別式の記号は"D"なんだろう?

Dは英語の略称で英単語の「discriminant」(日本語訳:判別、差別、区別)が由来になっています。

判別式がDの理由

何気なく使っている数学の記号にはちゃんと意味があるので、そこを気にしてみても面白いですね!

2次関数のおすすめ勉強法

順列・組み合わせの勉強法

2次関数は数学Ⅰのなかでも、解きやすい問題が多い単元です。
問題の意図をしっかり理解できれば、解法もすぐに思いつくようになります。

さて、ここでは2次関数のおすすめ勉強法を紹介します。

  • 教科書やノートを見直す
  • 問題集で応用力を磨く
  • 分かりやすい解説を見る

あなたの理解度に合わせて、自分に合った勉強法を試してみてください。

シータ
3つの勉強法を紹介するよ

教科書やノートを見直す

教科書やノートを見直す

まずは基本に立ち返って、教科書・ノートを見直してみましょう。

教科書には重要なポイントがギュッと詰まっています。

マストラでも2次関数の基本については「2次関数の公式まとめ」にて解説しているのでご覧ください。

シータ
基本問題が不安なら教科書がおすすめ!

問題集で応用力を磨く

問題集で応用力を磨く

2次関数の関する公式に慣れてきたら、次は問題を解いて応用力を磨きましょう。

  1. 教科書の例題
  2. 問題集の基本問題
  3. 問題集の応用問題

問題の難易度をステップアップさせていくと、自分がどこで分からなくなったか把握しやすいです。

2次関数の学習におすすめの問題集を紹介します。

created by Rinker
¥1,210 (2022/10/04 17:13:01時点 楽天市場調べ-詳細)
created by Rinker
¥1,210 (2022/10/05 09:16:56時点 楽天市場調べ-詳細)

Amazon会員なら参考書も読み放題です。
初回30日間の無料体験あり。

参考書が読み放題!Kindle Unlimitedについて詳しく知りたい

分かりやすい解説を見る

スタディサプリ画像

以下のような悩みがあるなら映像授業もおすすめです。

  • 勉強しても成績が伸びない
  • 学校の授業が分かりにくい
  • 分からない所が分からない

映像授業なら自分に必要な授業のみを受けられるうえに、分かるまで繰り返し視聴することができます。

分からないを1つずつ解消していけるので、定期テストで高得点を取りたい方は授業授業がおすすめです。

判別式Dの公式 まとめ

今回は二次方程式の判別式についてまとめました。

二次方程式の判別式 まとめ

判別式D

2次関数の判別式

判別式Dとx軸との共有点の個数

2次方程式の解

 

判別式Dは重要な公式です。なので、必ず押さえておきましょう!

また、判別式Dの符号によって解の個数が定まる理由も覚えておくことで、より理解が深まります。

 

\(x\)軸との共有点の個数は、2次関数の頂点の位置からも判断できます。

2次関数の軸と頂点については「2次関数の頂点・軸を求める手順」で解説しています。

 

2次関数を総復習したい方はこちらの記事がおすすめです。


2次関数の記事一覧

マストラ公式LINEアカウントを友達登録しよう!

マストラのLINE公式アカウントができました!

公式LINEリッチメニュー

~実際の公式LINEのメニュー~

LINE画面からワンタップで各単元のまとめ記事が読めるようになるよ!

高校生向けの様々なコンテンツを配信予定!

勉強に関する相談や質問にも答えるので、気軽にメッセージを送ってね!

▼この機会にぜひ登録!

友だち追加

完全個別指導のスタディトレーナー

オンライン学習コーチングStudyTrainer

スタディトレーナーは高校生の勉強を支える学習コーチングサービスです。

学習塾やオンライン家庭教師とは違い、365日いつでも質問や相談ができます。

目標に合わせた学習計画で、あなたの志望校合格を実現させます。

スタディトレーナー特徴

スタディトレーナーが行う
7つのサポート

  • 完全個別指導で苦手を克服!
  • 勉強のやり方から教えるので安心!
  • 目標から逆算した学習計画の作成
  • 1人ひとりに合った参考書をお届け
  • 映像授業で予習復習もバッチリ
  • 24時間365日LINEで質問可能
  • 進路相談もいつでも対応!

無料体験授業から始められるので、お気軽に申し込み下さい。

StudyTrainerはこちら

  • この記事を書いた人

ゆうや

当サイトの運営者。
指導歴7年目の数学講師。大学1年生から塾講師バイトを始め、これまで250名以上を指導。「オンライン指導スタディトレーナー」代表。オンライン家庭教師のご依頼・お申し込みは、こちらの公式アカウントから承っております。

-二次関数
-, ,

© 2022 マストラ高校数学まとめサイト Powered by AFFINGER5